Abstract

Abstract Problem-solving is an important component of chemistry teaching and learning. It often requires both conceptual knowledge and problem-solving skills. This study aims to examine how students solve tasks related to proton 1H NMR spectroscopy. This study included 24 voluntary participants enrolled in second-semester organic chemistry labs in two different instructional settings (online or in person). The data were collected through interviews conducted via Webex video conferencing software and used a think-aloud protocol. The data were analyzed using an inductive coding approach to identify students’ problem-solving approaches and resources they used when solving a given 1H NMR task that involved matching protons in a compound to specific peaks in the spectrum. The resources framework was used to capture students’ conceptual resources and problem-solving approaches. Results revealed that participants used more productive approaches than unproductive approaches while solving the problem; however, most students relied on one basic NMR concept to draw conclusions about the identity of a given peak. Also, when we observed the problem-solving resources that students utilized based on how they received NMR instruction (online or in-person), we did not observe major differences between the problem-solving resources that students used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.