Abstract
We draw analogies between self-similar, focusing dynamics in nonlinear partial differential equations (PDEs) and macroscopic dynamic features of the glass transition. In particular, we explore the divergence of the appropriate relaxation times in the case of hard spheres as the limit of random close packing is approached. We illustrate the analogy in the critical case, and suggest a description that can capture the onset of dynamic self-similarity in both phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.