Abstract

Abstract : Complex physical phenomena involving chemically reacting systems or the transport of heat or fluids are often modeled by coupled systems of time-dependent, nonlinear partial differential equations. The difficulties in understanding the stability of the differential equation systems and in designing efficient, accurate numerical methods for their solution are widely recognized and were the focus of this research. We have worked on four general aspects of the analysis and numerical approximation of systems of partial differential equations. These areas of research are: (1) modeling aspects and stability analysis for nonlinear time-dependent partial differential equations; (2) use and analysis of finite element or finite difference methods to discretize coupled systems of nonlinear differential equations; (3) development of adaptive or local grid refinement capabilities to resolve local phenomena in large-scale applications; and (4) development of data structures, preconditioners, and efficient solution algorithms for large-scale problems on new computer architectures. Emphasis has been placed upon multiphase or multicomponent, transport-dominated flow processes with dynamic local phenomena. The research also involved a mix of analysis, algorithm development, and large-scale computation using newer computer architectures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.