Abstract
The joint spectral radius of a finite set of real d×d matrices is defined to be the maximum possible exponential rate of growth of long products of matrices drawn from that set. A set of matrices is said to have the finiteness property if there exists a periodic product which achieves this maximal rate of growth. J.C. Lagarias and Y. Wang conjectured in 1995 that every finite set of real d×d matrices satisfies the finiteness property. However, T. Bousch and J. Mairesse proved in 2002 that counterexamples to the finiteness conjecture exist, showing in particular that there exists a family of pairs of 2×2 matrices which contains a counterexample. Similar results were subsequently given by V.D. Blondel, J. Theys and A.A. Vladimirov and by V.S. Kozyakin, but no explicit counterexample to the finiteness conjecture has so far been given. The purpose of this paper is to resolve this issue by giving the first completely explicit description of a counterexample to the Lagarias–Wang finiteness conjecture. Namely, for the setAα⁎:={(1101),α⁎(1011)} we give an explicit value ofα⁎≃0.749326546330367557943961948091344672091327370236064317358024… such that Aα⁎ does not satisfy the finiteness property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.