Abstract

We introduce a fully explicit method for solving monotone variational inequalities in Hilbert spaces, where orthogonal projections onto the feasible set are replaced by projections onto suitable hyperplanes. We prove weak convergence of the whole generated sequence to a solution of the problem, under only the assumptions of continuity and monotonicity of the operator and existence of solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.