Abstract

An analysis of previously reported elevated-temperature fatigue with hold time data supplemented by a metallographic examination of the 2 1/4 Cr-1Mo alloy steel specimens is reported. The tests were conducted in air over the temperature range of 427 to 593° C. Hold periods were introduced at various points of the hysteresis loop during each cycle. An explanation for the previously reported effects of these hold periods on the fatigue life is presented. The explanation attributes the reduction in fatigue life to the combination of reduced interaction solid solution hardening and accelerated fatigue crack initiation due to oxide cracking. The effect of hold periods is primarily due to an environmental interaction (rather than to a creep interaction) with the fatigue damage processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.