Abstract

Abstract Transparent, understandable, and persuasive recommendations support the electricity consumers’ behavioral change to tackle the energy efficiency problem. This paper proposes an explainable multi-agent recommendation system for load shifting for household appliances. First, we extend a novel multi-agent approach by designing and implementing an Explainability Agent that provides explainable recommendations for optimal appliance scheduling in a textual and visual manner. Second, we enhance the predictive capacity of other agents by including weather data and applying state-of-the-art models (i.e., k-nearest-neighbors, extreme gradient boosting, adaptive boosting, Random Forest, logistic regression, and explainable boosting machines). Since we want to help the user understand a single recommendation, we focus on local explainability approaches. In particular, we apply post-model approaches local, interpretable, model-agnostic explanation and SHapley Additive exPlanations as model-agnostic tools that can explain the predictions of the chosen classifiers. We further provide an overview of the predictive and explainability performance. Our results show a substantial improvement in the performance of the multi-agent system while at the same time opening up the “black box” of recommendations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call