Abstract
In the present study, an experimental investigation is conducted to quantify the characteristics of the microburst-induced wind loads (i.e., both static and dynamic wind loads) acting on a high-rise building model, compared to those with the test model placed in conventional atmospheric boundary layer (ABL) winds. The experimental study is performed by using an impinging-jet-based microburst simulator available at Iowa State University. In additional to conducting flow field measurements to quantify the flow characteristics of the microburst-like wind, both mean and dynamic wind loads acting on the test model induced by the microburst-like wind are assessed in detail based on the quantitative measurements of the surface pressure distributions around the test model and the resultant aerodynamic forces. It is found that the microburst-induced wind loads acting on high-rise buildings would be significantly different from their counterparts in conventional ABL winds. Both the static and dynamic wind loads acting on the high-rise building model were found to change significantly depending on the radial locations and the orientation angles of the test model in respect to the oncoming microburst-like wind. The dynamic wind loads acting on the test model were found to be mainly influenced by the periodical shedding of the primary vortices and the high turbulence levels in the microburst-like wind. The findings derived from the present study are believed to be useful to gain further insight into the underlying physics of the flow–structure interactions of high-rise buildings in violent microburst winds for a better understanding of the damage potential of microburst winds to high-rise buildings.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have