Abstract
In assessment of severe accident risk in light water reactors (LWRs), steam explosion is a nonnegligible phenomenon following a relocation of core melt (corium) into coolant, and thus various research efforts have been paid to steam explosion. There had been numerous studies showing that the occurrence of steam explosions is influenced by several factors such as melt and coolant temperatures, melt materials, non-condensable gasses, etc. However, most of the existing experiments used deionized (DI) water or tap water as coolant, with little consideration of the effect of chemicals (e.g. boric acid, sodium hydroxide, sodium phosphate) commonly applied in reactor coolant. To examine the effect of the chemical additives in coolant on steam explosion, the present study performs a series of molten Tin droplet-coolant interaction tests using DI water and different chemical solutions, including H3BO3 solutions, NaOH + H3BO3 neutral solutions, and Na3PO4 + H3BO3 neutral solutions. The experimental results show that adding NaOH and Na3PO4 in boric acid solution significantly affects the occurrence probability of spontaneous steam explosion, because of the presence of PO43− and H+ ions. When different solutions have equivalent concentrations of H3BO3, the peak pressure values of the spontaneous steam explosion of Sn droplets are similar among various solutions. Compared with those in DI water, steam explosion in the chemical solutions occurs predominantly within a narrow range of depth from 28 mm to 40 mm and produces a much higher peak pressure. This implies that more energetic steam explosions may occur in the chemical solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.