Abstract

A study on the radial-mode abrasive waterjet turning (AWJT) process is presented and discussed. An experimental investigation is carried out to explore the influence of process parameters on the depth of turning and material removal rate (MRR) when turning 96% alumina ceramics. The experiment is designed by the multifactor orthogonal experiment methods. The effect of feed speed, water pressure, abrasive mass flow rate, nozzle tilted angle and surface speed are investigated by the range analysis and variance analysis. The results show that the feed speed is the most significant variables affecting the depth of turning. Based on the test conditions, it is found that the most efficient conditions to maximize depth of turning are at a jet angle of 105 degree, a water pressure of 310MPa, an abrasive mass flow rate of 11.5 g/s, a surface speed of 5.5m/s and a feed speed of 0.05mm/s. At last, the effect mechanism of process variables on the depth of turning is analyzed qualitatively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.