Abstract

An experimental study was undertaken to investigate the grinding of granite at different grinding speeds over a wide range of material removal rates. A metal-bonded diamond blade was used as the grinding wheel with natural gray granite as the workpiece material. The tangential and normal force components were obtained through measuring the horizontal and vertical force components as well as the consumed power. The experiments were conducted with a constant wheel surface state to study the influence of grinding speed under different material removal rates. An additional test was also carried out to examine the grinding process while the wheel surface state progressively changed, in which case both forces and the morphologies of diamond grains were monitored at regular intervals. At a fixed material removal rate, both the tangential and normal forces reduced slightly with the grinding speed. But the specific energy increased greatly at higher grinding speeds especially at a shallower maximum grain depth of cut.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call