Abstract

The effect of cutting-edge truncation on the grinding mechanism of quartz glass as a hard and brittle material was investigated. From computer-aided grinding simulations and experiments on surface plunge grinding it was found that cutting-edge truncation decreases the ground-surface roughness and the maximum grain depth of cut; however, the maximum grain depth of cut approaches a constant value depending on the grinding wheel specifications. The alternative means of making the maximum grain depth of cut much smaller than this constant value is to increase the speed ratio. Cutting-edge truncation should be terminated at the optimum truncation depth to avoid the high grinding forces resulting from the flattening of cutting edges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call