Abstract

Proton exchange membrane fuel cells are widely utilized in the areas of aerospace, military and vehicles. Enhancing the reactant transportation and improving water, heat management can effectively increase the electrochemical reaction rate and power output. Orientated-type flow channels have been proved to be effective on improving mass transporting and enhancing performance. In this study, a flow field plate with transparent observation window, whose channel side wall is designed as transparent side-plates, is fabricated to achieve the side-view observation on liquid movement behaviors inside fuel cells. The visualization results of reactant gas and liquid water generation and flowing behaviors in channel regions are observed through the side direction for the first time. Experimental results infer that: orientated-type flow channels having baffles affect droplet generation, moving and shape in gas flow channels, and higher current densities result in more liquid water generation. The baffle downstream region having sudden expanded region slows down droplet moving, and baffle upstream sides accelerates droplet moving. Moreover, the generated heat of electrochemical reaction cannot satisfy maintaining a higher cell working temperature requirement, and an extra heating procedure is required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.