Abstract
This paper aims to investigate the strength and failure mechanism of fractured rock under seepage pressure. For this purpose, precracked sandstone specimens were prepared with different fissure angles, and a seepage pressure loading device was created. Together with the acoustic emission (AE) system, the loading device was adopted to perform uniaxial compression tests with or without seepage pressure. The main results are as follows. Combined with axial stress‐strain curves, photographic monitoring results and the output of AE counts and rock failure process can be generally divided into four stages: microcrack closure, elastic deformation, crack growth and propagation, and final failure. The seepage pressure had a significant effect on the mechanical properties of the specimens: the specimens under seepage pressure lagged far behind those without seepage pressure in peak strength but maintained a comfortable lead in peak strain. Under seepage pressure, the typical failure features of the specimens varied with the fissure angles: the specimens with small fissure angles (i.e., [0°,30°]) mainly underwent tensile failure; those with medium fissure angles (i.e., [30°,60°]) suffered from shear failure; and those with large fissure angles (i.e., [60°,75°]) were prone to tensile‐shear failure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.