Abstract

Due to the differences in mechanical properties of Al and SiC particles, the problems of SiC particle pullout and high surface roughness will occur in the processing of SiCp/Al composites. However, the ultrasonic vibration-assisted grinding of SiCp/Al can effectively decrease the appearance of such problems. A comparative experimental study of the ultrasonic vibration-assisted and ordinary grinding of SiCp/Al is conducted. First, the effect of ultrasonic amplitude on the removal form of SiC is summarized by observing the surface morphology of the sample. Then, the primary reasons for the pullout of SiC particles and high surface roughness in SiCp/Al processing are analyzed. The variation law of the surface roughness of SiCp/Al under different ultrasonic amplitudes and grinding parameters is summarized through a single-factor experiment. The results show that ultrasonic vibration-assisted grinding is beneficial for reducing the surface roughness of SiCp/Al. When grinding linear speed of grinding wheel vs increases from 2.512 m/s to 7.536 m/s, surface roughness Ra decreases from 0.25 µm to 0.16 µm. when feed rate vw increases from 100 mm/min to 1700 mm/min, surface roughness Ra increases from 0.13 µm to 0.20 µm. When grinding depth ap increases from 0.01 mm to 0.05 mm, surface roughness Ra increases from 0.13 µm to 0.19 µm. When ultrasonic amplitude A is increased from 0 µm to 2 µm, surface roughness Ra decreases from 0.26 µm to 0.15 µm. When ultrasonic amplitude A is increased from 2 µm to 4.4 µm, surface roughness Ra increases from 0.15 µm to 0.18 µm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call