Abstract

Measurements are presented of the magnesium isotopic composition of chlorophyll-a, extracted from cyanobacteria, relative to the isotopic composition of the culture medium in which the cyanobacteria were grown. Yields of 50–93% chlorophyll-a were achieved from the pigment extracts of Synechococcus elongatus, a unicellular cyanobacteria. This material was then digested using concentrated nitric acid to extract magnesium. Separation was accomplished using columns of cation-exchange resin, which achieved a 103 ± 10% yield of magnesium from chlorophyll-a. This procedure ensured accurate measurement of the magnesium-isotopic ratios without isobaric interferences using a multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). We find a slight depletion in the heavier isotopes of magnesium in chlorophyll-a relative to culture medium, early growth phase: Δ 26Mg = −0.71(±0.35)‰ and Δ 25Mg = −0.37(±0.18)‰; late growth phase: Δ 26Mg = −0.53(±0.20)‰ and Δ 25Mg = −0.26(±0.11)‰, due to an apparent mass-dependent fractionation. We suggest that the small fractionation results from chelation during intracellular processes. A likely candidate for this chelation step involves the magnesium-chelatase enzyme, which mediates the insertion of magnesium to the tetrapyrrole ring during chlorophyll-a biosynthesis. Proof of this hypothesis can be tested with biological controls whereby steps in the enzymatic pathways of chlorophyll synthesis are selectively suppressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call