Abstract

This paper presents an experimental setup and experimental data for critical heat flux. The hydraulic loop of the experimental setup allows it to maintain stable flow parameters at the inlet of the test section at pressures up to 2.7 MPa and temperatures up to 200 °C. Experiments of hydrodynamics and heat transfer were performed for R113 and RC318 in two vertical channels with diameters of 1.36 and 0.95 mm and lengths of 200 and 100 mm, respectively. The inlet pressure-to-critical pressure ratio (reduced pressure) was pr = p/pcr = 0.15 ÷ 0.9, the mass flux ranges were between 700 and 4800 kg/(m2s), and inlet temperature varied from 30 to 180 °C. The primary regimes were obtained for conditions that varied from highly subcooled flows to saturated flows. For each regime with fixed parameters, the maximum possible heating power value was applied, with the maximum limited by the maximum output of the power supply, the onset of dryout, or wall temperatures exceeding 350 °C. The influence of flow conditions (i.e., mass flow rate, pressure, inlet temperature, and the channel diameter) on the critical heat flux is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.