Abstract

The Georgia Institute of Technology group has performed studies to characterize the thermal hydraulics of a single “finger” module of the helium-cooled modular divertor with multiple jets (HEMJ) proposed for long-pulse magnetic fusion reactors in a helium (He) loop designed with maximum mass flow rate of 10 g/s. However, testing divertor modules at prototypical heat fluxes and temperatures remains an engineering challenge. A new larger helium loop with a maximum mass flow rate of 100 g/s, suitable for evaluating helium-cooled divertors with larger surface areas such as a nine-finger HEMJ module, is currently being constructed. This work presents an experimental validation of a numerical model exploring the applicability of the “reversed heat flux approach,” which cools (versus heats) the plasma-facing surface of the divertor module to evaluate the helium-side heat transfer coefficient (HTC). The approach is to be used for performance evaluation of single and multiple modules of HEMJ in existing and future large helium loops.A cooling facility for producing a jet of water with a maximum mass flow rate of 1.4 kg/s at a maximum pressure of 0.4 MPa and temperature of 295 K (Re = 2.2 × 105) is described. Numerical and experimental results are presented for the heat flux and average helium impingement surface temperature over a range of water flow rates (0.5 to 1.4 kg/s) for heat fluxes as high as 5 MW/m2.The numerical model suggests that the HTC of the water impingement surface is comparable to or greater than that of the helium impingement surface. For given helium and water temperatures, the heat flux values are generally limited by conduction across the outer shell. These initial studies provide guidance on extending this approach to estimating the thermal-hydraulic performance of larger divertor module designs while reducing the challenges associated with studying such designs in the normal heating configuration at their extremely high prototypical temperatures and incident heat fluxes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.