Abstract

The aim of this paper is to establish a valid procedure for better understanding all of the phenomena associated with the high-speed machining of glass fiber-reinforced plastic (GFRP) composites. Both rectangular and circular specimens were machined at high cutting speeds (up to 50 m/min) in order to understand what occurred for all values of fiber orientation angles during machining operations. An innovative testing methodology was proposed and studied to investigate the phenomenon of burr formation and thus understand how to avoid it during machining operations. To this end, the forces arising during the machining process and the roughness of the resulting surface were carefully studied and correlated with the cutting angle. Additionally, the cutting surface and chip morphology formed during cutting tests were examined using a high-speed camera. Close correlations were found between the variations in the cutting forces’ signals and the trends of the surface roughness and the morphology of the machined surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call