Abstract

ABSTRACTCarbon fibres with high tensile strength are being increasingly utilised in the manufacture of advanced composite aerostructures. A Modified Compact Tension (MCT) specimen is often deployed to measure the longitudinal intralaminar fracture toughness but a high tensile strength often leads to premature damage away from the crack tip. We present an approach whereby the MCT specimen is supported by external fixtures to prevent premature damage. In addition, we have developed a novel measurement technique, based on the fibre failure strain and C-scanning, to determine the crack length in the presence of surface sublaminate delamination which masks the crack tip location. A set of cross-ply specimens, with a ((90/0)s)4layup, were manufactured from an IMS60/epoxy composite system Two different data reduction schemes, compliance calibration and the area method, are used to determine the fibre-dominated initiation and propagation intralaminar fracture toughness values. Propagation values of fracture toughness were measured at 774.9 ± 5.2% kJ/m2and 768.5 ± 4.1% kJ/m2, when using the compliance calibration method and the area method, respectively. Scanning Electron Microscopy (SEM) is carried out on the fracture surface to obtain insight into the damage mechanism of high-tensile-strength fibre-reinforced unidirectional composites. The measured tensile fracture toughness value is used in a fully validated computational model to simulate the physical test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.