Abstract

The use of lean burn technology in spark-ignition engines has been dominant; however, lean burn technique can not economically satisfy the increasingly restricted future emission standards. Consequently, alternative combustion techniques need to be investigated and developed. In this paper, the use of the stoichiometric air–fuel mixture with exhaust gas recirculation (EGR) technique in a spark-ignition natural gas engine was experimentally investigated. Engine performance and NO emissions were studied for both atmospheric and supercharged inlet conditions. It was found that the use of EGR has a significant effect on NO emissions. NO emissions decreased by about 50% when EGR dilution increased from zero with an inlet pressure of 101 kPa to close to the misfire limit with an inlet pressure of 113 kPa. In addition, the use of EGR effectively suppressed abnormal combustion which occurred at higher inlet pressure. The use of higher inlet pressure in the presence of EGR improved engine performance significantly. Engine brake power increased by about 20% and engine fuel consumption decreased by about 7% while NO emissions decreased by about 12% when 5% of EGR dilution was employed with an inlet pressure of 113 kPa compared to using undiluted stoichiometric inlet mixture with an inlet pressure of 101 kPa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call