Abstract
The aim of this work is to review the potential of exhaust gas recirculation (EGR) to reduce the exhaust emissions, particularly NO X emissions, and to delimit the application range of this technique. A detailed analysis of previous and current results of EGR effects on the emissions and performance of Diesel engines, spark ignition engines and duel fuel engines is introduced. From the deep analysis, it was found that adding EGR to the air flow rate to the Diesel engine, rather than displacing some of the inlet air, appears to be a more beneficial way of utilizing EGR in Diesel engines. This way may allow exhaust NO X emissions to be reduced substantially. In spark ignition engines, substantial reductions in NO concentrations are achieved with 10% to 25% EGR. However, EGR also reduces the combustion rate, which makes stable combustion more difficult to achieve. At constant burn duration and brake mean effective pressure, the brake specific fuel consumption decreases with increasing EGR. The improvement in fuel consumption with increasing EGR is due to three factors: firstly, reduced pumping work; secondly, reduced heat loss to the cylinder walls; and thirdly, a reduction in the degree of dissociation in the high temperature burned gases. In dual fuel engines, with hot EGR, the thermal efficiency is improved due to increased intake charge temperatures and reburning of the unburned fuel in the recirculated gas. Simultaneously, NO X is reduced and smoke is reduced to almost zero at high natural gas fractions. Cooled EGR gives lower thermal efficiency than hot EGR but makes possible lower NO X emissions. The use of EGR is, therefore, believed to be most effective in improving exhaust emissions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.