Abstract

This research investigated the combustion process of an AVL Model LEF/Volvo 5312 single cylinder engine configured to simulate the operation of a heavy-duty spark ignition (SI) natural gas (NG) engine operated on stoichiometric mixture. The factors affecting the combustion process that were examined include intake pressure, spark timing (ST), and the addition of diluents including nitrogen (N2) and carbon dioxide (CO2) to the NG to simulate low British thermal unit (BTU) gases. The mixing of diluents with NG is able to slow down the flame propagation speed, suppress the onset of knock, and allow the engine to operate on higher boost pressure for higher power output. The addition of CO2 was more effective than N2 in suppressing the onset of knock and slowing down the flame propagation speed due to its high heat capacity. Boosting intake pressure significantly increased the heat release rate (HRR) evaluated on J/°CA basis which represents the rate of mass of fuel burning. However, its impact on the normalized HRR evaluated on %/°CA basis, representing the flame propagation rate, was relatively mild. Boosting the intake pressure from 1.0 to 1.8 bar without adding diluents increased the peak HRR to 1.96 times of that observed at 1.0 bar. The increase was due to the burning of more fuel (about 1.8 times), and the 12.9% increase in the normalized HRR. The latter was due to the shortened combustion duration from 23.6 to 18.2 °CA, a 22.9% reduction. The presence of 40% CO2 or N2 in their mixture with NG increased the peak cylinder pressure (PCP) limited brake mean effective pressure (BMEP) from 17.2 to about 20.2 bar. The combustion process of a turbocharged SI NG engine can be approximated by referring to the HRR measured under a naturally aspirated condition. This makes it convenient for researchers to numerically simulate the combustion process and the onset of knock of turbocharged SI NG engines using combustion process data measured under naturally aspirated conditions as a reference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.