Abstract

A flood protection dike blends seamlessly with natural surroundings. These dikes stand as vital shields, mitigating the catastrophic effects of floods and preserving both communities and ecosystems. Their design not only aids in controlling water flow but also ensures minimal disruption to the local environment and its biodiversity. The present study used a uniform cohesionless sand with d50 = 0.9 mm to investigate the local scour process near a single combined dike (permeable and impermeable), replicating a flooding scenario. The experiments revealed that the maximum scour depth is likely to occur at the upstream edge of the dike, resembling a local scour observed around a scaled-down emerged dike in an open channel. The scour hole downstream of the dike gets shallower as it gets smaller, as do the horseshoe vortices that surround it. Additionally, by combining different pile shapes, the flow surrounding the dike was changed to reduce horseshoe vortices, resulting in scour length and depth reductions of 48% at the nose and 45% and 65% at the upstream and downstream dike–wall junction, respectively. Contrarily, the deposition height downstream of the dike had a reciprocal effect on permeability, which can severely harm the riverbank defense system. The combined dike demonstrates their ability to mitigate scour by reducing the flow swirls formed around the dike. The suggested solutions can slow down the rapid deterioration and shield the dike and other river training infrastructure from scour-caused failures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.