Abstract
The thermal conductivity of recently produced hexagonal boron nitride (hBN)-containing nanofluids is comparatively higher than their viscosity, indicating that these materials belong to a relatively novel class. In this study, hBN–water nanofluids in stable and dispersed concentrations were used in parallel and counterflow experiments at volumes of 0.01%, 0.1%, and 1%, as well as at various flow rates and Reynolds numbers. When employing hBN–water nanofluid in a counter-flow heat exchanger instead of distilled water, the results showed a 16.7% increase in the overall heat transfer coefficient. The findings also showed that, in comparison to a counter-flow heat exchanger, employing hBN nanofluid as the cold fluid in a parallel-flow heat exchanger produced superior results in terms of an increase in heat transfer. The effects of nanofluid concentration on pressure drops were investigated through experiments conducted in both parallel- and counter-flow conditions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.