Abstract

AbstractA new methodology to investigate the failure of elastomers in a confined geometry has been developed and applied to model end‐linked polyurethane elastomers. The experimental in situ observations show that the elastomers fail by the growth of a single cavity nucleated in the region of maximum hydrostatic stress. Tests carried out at different temperatures for the same elastomer show that the critical stress at which this crack grows is not proportional to the Young's modulus E but depends mainly on the ratio between the mode I fracture energy GIC and E. A reasonable fit of the data can be obtained with a model of cavity expansion by irreversible fracture calculating the energy release rate by finite elements with a strain hardening constitutive equation. Comparison between different elastomers shows that the material containing both entanglements and crosslinks is both tougher in mode I and more resistant to cavitation relative to its elastic modulus. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48:1409–1422, 2010

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.