Abstract

Although rupture of an atherosclerotic plaque is considered to be the cause of most acute coronary syndromes, the mechanism of plaque rupture is controversial. To test the hypothesis that plaque rupture occurs at sites of high circumferential stress in the diseased vessel, the distribution of stress was analyzed in 24 coronary artery lesions. Histological specimens from 12 coronary artery lesions that caused lethal myocardial infarction were compared with those from 12 stable control lesions. A finite element model was used to calculate the stress distributions at a mean intraluminal pressure of 110 mm Hg. The maximum circumferential stress in plaques that ruptured was significantly higher than maximum stress in stable specimens (4,091 +/- 1,199 versus 1,444 +/- 485 mm Hg, p < 0.0001). Twelve of 12 ruptured lesions had a total of 31 regions of stress concentration of more than 2,250 mm Hg (mean, 2.6 +/- 1.4 high stress regions per lesion); only one of 12 control lesions had a single stress concentration region of more than 2,250 mm Hg. In seven of 12 lethal lesions (58%), rupture occurred in the region of maximum circumferential stress; in 10 of the 12 lethal lesions (83%), rupture occurred in a region where computed stress was more than 2,250 mm Hg. These data suggest that concentrations of circumferential tensile stress in the atherosclerotic plaque may play an important role in plaque rupture and myocardial infarction. However, plaque rupture may not always occur at the region of highest stress, suggesting that local variations in plaque material properties contribute to plaque rupture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.