Abstract
The present thesis is the result of a four year experimental research, which aims at studying the impact of non-Newtonian droplets (i.e., droplets of complex fluids such as polymer solutions) on heated surfaces (i.e., surfaces with a temperature above the Leidenfrost point) and soft surfaces (i.e., surfaces that undergo temporary or permanent deformations upon drop impact) through high-speed imaging. In the first year we focused on the Leidenfrost drop impact of different model fluids with matching flow curves. We demonstrate that the total kinetic energy carried by low-viscosity Newtonian drops during retraction is partly transformed into rotational kinetic energy rather than dissipated (published on Physical Review E, 2016). In the second year we extended the Leidenfrost drop impact experiment to viscoplastic fluids. The results show that the main contribution to drop rebound is due to surface forces rather than the elasticity of vapour cushion (published on Soft Matter, 2016). A systematic investigation on the impact of viscoplastic drops onto viscoplastic substrates was carried out in the third year. It is shown that the yield stress magnitude of drop/substrate strongly affects the final shape of the impacting drop (published on Soft Matter, 2017). The fourth year was devoted to the drop impact on spherical elastic surfaces. The dynamic contact angle measured using a novel digital image processing scheme is found to be significantly affected by the impact parameters and a quantitative estimation of the deformation energy is proposed (published on Physics of Fluids, 2017).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.