Abstract
ObjectivesNon‐melanoma skin cancers are the most frequently occurring type of cancer worldwide. They can be effectively treated using topical dermatological photodynamic therapy (PDT) employing protoporphyrin IX (PpIX) as the active photosensitising agent as long as the disease remains superficial. Novel iron chelating agents are being investigated to enhance the effectiveness and extend the applications of this treatment modality, as limiting free iron increases the accumulation of PpIX available for light activation and thus cell kill.MethodsHuman lung fibroblasts (MRC‐5) and epithelial squamous carcinoma (A431) cells were treated with PpIX precursors (aminolaevulinic acid [ALA] or methyl‐aminolevulinate [MAL]) with or without the separate hydroxypyridinone iron chelating agent (CP94) or alternatively, the new combined iron chelator and PpIX producing agent, AP2‐18. PpIX fluorescence was monitored hourly for 6 hours prior to irradiation. PDT effectiveness was then assessed the following day using the lactate dehydrogenase and neutral red assays.ResultsGenerally, iron chelation achieved via CP94 or AP2‐18 administration significantly increased PpIX fluorescence. ALA was more effective as a PpIX‐prodrug than MAL in A431 cells, corresponding with the lower PpIX accumulation observed with the latter congener in this cell type. Addition of either iron chelating agent consistently increased PpIX accumulation but did not always convey an extra beneficial effect on PpIX‐PDT cell kill when using the already highly effective higher dose of ALA. However, these adjuvants were highly beneficial in the skin cancer cells when compared with MAL administration alone. AP2‐18 was also at least as effective as CP94 + ALA/MAL co‐administration throughout and significantly better than CP94 supplementation at increasing PpIX fluorescence in MRC5 cells as well as at lower doses where PpIX accumulation was observed to be more limited.ConclusionsPpIX fluorescence levels, as well as PDT cell kill effects on irradiation can be significantly increased by pyridinone iron chelation, either via the addition of CP94 to the administration of a PpIX precursor or alternatively via the newly synthesized combined PpIX prodrug and siderophore, AP2‐18. The effect of the latter compound appears to be at least equivalent to, if not better than, the separate administration of its constituent parts, particularly when employing MAL to destroy skin cancer cells. AP2‐18 therefore warrants further detailed analysis, as it may have the potential to improve dermatological PDT outcomes in applications currently requiring enhancement. Lasers Surg. Med. 50:552–565, 2018. © 2018 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.
Highlights
Non-melanoma skin cancers (NMSC) are one of the most common types of cancer Worldwide [1,2]
The normal lung fibroblasts (MRC5) were noted to accumulate more protoporphyrin IX (PpIX) in arbitrary units compared to the squamous cell carcinoma cells (A431) (Figs. 1a and b)
In the irradiated photodynamic therapy (PDT) group of both cell types, addition of the PpIX prodrugs ALA or MAL led to a significantly increased cell death compared to the corresponding negative controls
Summary
Non-melanoma skin cancers (NMSC) are one of the most common types of cancer Worldwide [1,2]. They are predominantly located on the face and neck, and can lead to local skin damage or disfigurement [3] if left untreated. They are not associated with high mortality rates, they occur with high frequency [3] and.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have