Abstract
Abstract In many lubrication processes, lubricating oils containing polymer additives are subject to high shear rate through very small clearance channels. While the influence of shear rate on the performance of these lubricants has been well examined, very little is known about the effects of channel size. In this study a specially designed microchannel viscometer has been used to experimentally characterize the influence of channel height on the effective viscosity of oil lubricants with two different polymer additives (a radial hydrogenated styrene–isoprene copolymer and an A–B–A block ethylene–propylene copolymer) commenly used as viscosity index (VI) modifiers. The mass concentration of the polymer solutions ranged from 0.5% to 1.5% in this study. The viscosity was measured over a range of shear rates in steel slit microchannels with heights of 4.5, 7 and 11.5 μm, respectively. For all solutions a significant viscosity dependence on channel size was observed. In the higher shear rate range the smaller channels exhibited a lower viscosity while in the lower shear rate range all solutions exhibited a significant increase in viscosity. Generally, this observed increase in viscosity is more dramatic in the smaller channels. Possible causes of these behaviors were discussed in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.