Abstract

Retrons are bacterial immune systems that use reverse-transcribed DNA (RT-DNA) to detect phage infection. They are also deployed for genome editing, where they are modified so that the RT-DNA encodes an editing donor. Retrons are common in bacterial genomes, and thousands of unique retrons have been predicted bioinformatically. However, few have been characterized experimentally. We add to the corpus of experimentally studied retrons, finding 62 empirically determined, natural RT-DNAs that are not predictable from the retron sequence alone. We synthesize >100 previously untested retrons to identify the natural sequence of RT-DNA they produce, quantify their RT-DNA production and test the relative efficacy of editing using retron-derived donors to edit bacterial, phage and human genomes. We observe large diversity in RT-DNA production and editing rates across retrons, finding that top-performing editors are drawn from a subset of the retron phylogeny and outperform those used in previous studies, reaching precise editing rates of up to 40% in human cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.