Abstract

The double notched (DN) plate is commonly used in rotary air preheaters, but relevant investigations are rare. Thus, thermal-hydraulic performances of the DN plate are investigated in this paper. A single-blow, transient technique is refined and then used to measure the overall mean heat transfer coefficients and friction factors. A validated numerical method is also utilized to provide local information. The measured results show that the performance of the DN plate approaches that of the double undulated (DU) plate and lies between that of the cross corrugated (CC) plate and the parallel plate. No swirling flow pattern is identified in the predicted velocity fields. Basically, two types of flow are observed: wavy channel flow and pipe flow. High or low Nusselt numbers, Nu, are obtained at the luff or lee side of undulations and notches, respectively. Nu values increase and Nu distributions become more homogenous with increasing Reynolds numbers, Re. A recommendation is made that the DN plate be operated under moderate Re to achieve homogenous and enhanced heat transfer, given the allowable pressure drop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.