Abstract

The oxidation of acetylene (as soot precursor) and dimethyl ether (DME, as a promising fuel additive) mixtures has been analyzed in a tubular flow reactor, under high-pressure conditions (20, 40 and 60 bar), in the 450–1050 K temperature range. The effect of varying the air excess ratio (λ≈0.7, 1 and 20) and the percentage of DME with respect to acetylene (10 and 40%) has been analyzed from both experimental and modeling points of view. The addition of DME modifies the composition of the radical pool, increasing the production of OH radicals which cause a shift in the onset temperature for C2H2 conversion to lower temperatures; the higher the amount of DME, the lower the temperature. The presence of DME favors the oxidation of C2H2 towards products such as CO and CO2, eliminating carbon from the paths that lead to the formation of soot. On the other hand, in the presence of C2H2, DME begins to be consumed at temperatures higher than those required for the high-pressure oxidation of neat DME, around 175–200 K more. Consequently, the negative temperature coefficient (NTC) region characteristic of this compound at low temperatures is not observed under those conditions. However, an additional analysis of the influence of DME inlet concentration (at 20 bar and λ=1) indicates that, if the amount of DME in the mixture is increased to 500 ppm and more (700 or 1000 ppm), the reaction pathways responsible for this high DME reactivity at low temperatures become more relevant and the NTC region can now be observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call