Abstract

In order to better understand the low-temperature oxidation chemistry of alkenes, 1-butene and i-butene oxidation experiments triggered by dimethyl ether (DME) were conducted in a jet-stirred reactor at 790 Torr, 500–725 K and the equivalence ratio of 0.35. Low-temperature oxidation intermediates involved in alcoholic radical chemistry and allylic radical chemistry were detected by using synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS). To better interpret the experimental data, a kinetic model was proposed based on our low-temperature oxidation model of DME and comprehensive oxidation models of 1-butene and i-butene in literature. Based on present experimental results and modeling analysis, alcoholic radical chemistry initiated by OH addition is mainly responsible for the low-temperature chain propagation of butenes, since the Waddington mechanism plays a dominant role compared with the chain-branching pathways through the second O2 addition. Allylic radical+HO2 reactions producing alkenyl hydroperoxides and fuel+O2 serve as the major chain-branching and chain-termination pathways, respectively, and they are competitive in the negative temperature coefficient (NTC) region. In contrast, chain-branching pathways originating from allylic radical+O2 and alkyl-like radical+O2 reactions have little contribution to the OH formation. Comparison with the simulation results of butane/DME mixtures demonstrates that butenes can largely inhibit the reactivity of DME at low temperatures due to its reduced low-temperature chain-branching process. However, in the NTC region, butenes may not be good OH absorbents since the allylic radicals can convert HO2 to OH and consequently enhance the oxidation reactivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call