Abstract

The pulsed laser photolysis/resonance fluorescence technique was used to study the reaction of S((3)P(J)) with CS(2) in an Ar bath gas. Over 290-770 K pressure-dependent kinetics were observed and low- and high-pressure limiting rate constants were derived as k(0) = (11.5-0.0133 T/K) × 10(-31) cm(6) molecule(-2) s(-1) (error limits ± 20%) and k(∞) = (2.2 ± 0.6) × 10(-12) cm(3) molecule(-1) s(-1). Equilibration observed at 690-770 K yields a CS(2)-S bond dissociation enthalpy of 131.7 ± 4.0 kJ mol(-1) at 298 K. This agrees with computed thermochemistry for a spin-forbidden C(2V) adduct, estimated at the coupled-cluster single double triple level extrapolated to the infinite basis set limit. A pressure-independent pathway, assigned to abstraction, was observed from 690 to 1040 K and can be summarized as 1.14 × 10(-10) exp(-37.0 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) with error limits of ± 40%. The results are rationalized in terms of a computed potential energy surface and transition state theory and Troe's unimolecular formalism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.