Abstract

To conclude that there is a dedicated color motion system, the hypothesis that the luminance motion pathway is processing color motion due to some nonlinearity must be rejected. Many types of nonlinearities have been considered. Cavanagh and Anstis (1991) considered interunit variability in equiluminance, but they found that adding a color-defined modulation to a luminance-defined drifting modulation increased the contribution to motion. This color contribution to motion cannot be due to interunit variability in equiluminance alone because such a luminance artifact would increase the effective luminance contrast for some luminance-sensitive units and decrease it for the others, resulting in no additional contribution to motion on average. Cavanagh and Anstis considered this color contribution to motion as evidence of a dedicated color motion system, but here we show that such a color contribution to motion varies with the phase difference between the luminance and color modulations, which would not be expected if luminance- and color-defined motion were processed separately. Specifically, the contribution to motion was greater when the luminance and color modulations were aligned (i.e., 0 degrees or 180 degrees phase difference), than when they were not (90 degrees or 270 degrees phase difference). Such a luminance-color phase interaction was also observed when spatially interleaving luminance and color information, which suggests that the interaction occurs after some spatial integration (i.e., not at the photoreceptors). To our knowledge, this luminance-color phase interaction cannot be explained by any previously considered nonlinearity. However, it can be explained by an expansive nonlinearity occurring before the summation of the L- and M-cone pathways (i.e., before ganglion cells) and after some spatial integration (i.e., after the photoreceptors). We conclude that there is a nonlinearity that has not been considered before, enabling some color motion processing by the luminance motion system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.