Abstract
The accurate solution of quasi-Helmholtz decomposed electric field integral equations (EFIEs) in the presence of arbitrary excitations is addressed: Depending on the specific excitation, the quasi-Helmholtz components of the induced current density do not have the same asymptotic scaling in frequency, and thus, the current components are solved for with, in general, different relative accuracies. In order to ensure the same asymptotic scaling, we propose a frequency normalization scheme of quasi-Helmholtz decomposed EFIEs which adapts itself to the excitation and which is valid irrespective of the specific excitation and irrespective of the underlying topology of the structure. Specifically, neither an ad-hoc adaption nor <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">a-priori</i> information about the excitation is needed as the scaling factors are derived based on the norms of the right-hand side (RHS) components and the frequency. Numerical results corroborate the presented theory and show the effectiveness of our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.