Abstract

A considerable excess of small ribosomal subunits was observed in L cells grown in suspension culture. The ratio between the small and large ribosomal subunits in the cytoplasm was estimated to be 1.17 ± 0.05 for cells dividing every 20 to 24 hours. The 60 S ribosomal subunits were turning over much faster than the 40 S subunits. Half-lives of 155 ± 20 hours for 18 S ribosomal RNA and 82 ± 15 hours for 28 S ribosomal RNA were observed under conditions where the cell number doubled every 24 hours and the viability was 95%. By correcting for cell death the half-lives of 18 S and 28 S ribosomal RNA were estimated to be approximately 300 hours and 110 hours, respectively. During storage of isolated ribosomes the small ribosomal subunits were degraded faster than the large subunits. This shows that the degradation of 60 S subunits was not an artifact taking place during the isolation procedure. It is postulated that the small ribosomal subunits are protected by protein to a greater extent than the 60 S subunits in these rapidly growing cells in suspension culture. The protection may take place both in the nucleus during synthesis, thus avoiding degradation (“wastage”) of nascent subunit precursors, and later in the cytoplasm. A calculation has been carried out to show that the observed excess of small subunits may be accounted for on the basis of a 1:1 synthesis of the small and large ribosomal subunits in the nucleus and different degradation rates in the cytoplasm. The results do not exclude the possibility of a difference in the “wastage” of 18 S and 28 S ribosomal RNA in the nucleus in addition to the difference in the turnover rates in the cytoplasm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call