Abstract

Changes in the physical and chemical processes during the ignition delay period of a gas-fueled diesel engine (dual-fuel engine) due to the increased admission of the gaseous fuels and diluents are examined. The extension to the chemical aspects of the ignition delay with the added gaseous fuels and the diluents into the cylinder charge is evaluated using detailed reaction kinetics for the oxidation of dual-fuel mixtures at an adiabatic constant volume process while employing n-heptane as a representative of the main components of the diesel fuel. In the examination of the physical aspects of the delay period, the relative contributions of changes in charge temperature, pressure, physical properties, pre-ignition energy release, heat transfer, and the residual gas effects due to the admission of the gaseous fuels are discussed and evaluated. It is shown that the introduction of gaseous fuels and diluents into the diesel engine can substantially affect both the physical and chemical processes within the ignition delay period. The major extension of the delay is due to the chemical factors, which strongly depend on the type of gaseous fuel used and its concentration in the cylinder charge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call