Abstract
This article deals with the trajectory tracking problem for the angular velocity of a dc-motor shaft using a Buck-Boost-converter as the switch regulated electronic drive. The main result of our proposed control scheme is that a linear time-varying controller results from the consideration of the exact tracking error dynamics and static passive output feedback controller design. The measuring of the angular velocity is not really necessary and the control law is synthesized using only a linear time-varying combination of the converter current and voltage variables. The voltage reference trajectory for the converter is generated exploiting a partial differential flatness property of the combined system. The reference trajectories of the average control and the input current are calculated via stored energy considerations and planning for the initial and final stationary regimes. The discrete switching control realization of the designed continuous feedback control law is accomplished by means of a traditional PWM-modulation scheme. Experimental results are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.