Abstract

This paper deals with the problem of static output feedback (SOF) control design for a class of diffusion partial differential equation (PDE) and ordinary differential equation (ODE) cascades, where the ODE model is used to describe the dynamics of the multi-input and multi-output (MIMO) plant and the diffusion PDE model is employed to represent the dynamics of actuators. The objective of this paper is to develop a simple as well as effective SOF controller via the Lyapunov's direct method such that the resulting closed-loop system is globally exponentially stable. By constructing a quadratic Lyapunov function, the sufficient condition on the globally exponential stability of the closed-loop cascaded system is presented in terms of linear matrix inequality (LMI). Then, an LMI-based design method of the SOF controller is developed on the basis of the obtained stability analysis result. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed design method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.