Abstract

Maxwell’s equations describe the propagation of electromagnetic waves and are therefore fundamental to understanding many problems encountered in the study of antennas and electromagnetics. The aim of this paper is to propose and analyse an efficient fully discrete scheme for solving three-dimensional Maxwell’s equations. This is accomplished by combining Fourier pseudospectral methods in space and exact formulation in time. Fast computation is efficiently implemented in the scheme by using the matrix diagonalisation method and fast Fourier transform algorithm which are well known in scientific computations. An optimal error estimate which is not encumbered by the CFL condition is established and the resulting scheme is proved to be of spectral accuracy in space and exact in time. Furthermore, the scheme is shown to have multiple conservation laws including discrete energy, helicity, momentum, symplecticity, and divergence-free field conservations. All the theoretical results of the accuracy and conservations are numerically illustrated by two numerical tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.