Abstract

Starting from full-dimensional models of solute transport, we derive and analyze multi-dimensional models of time-dependent convection, diffusion, and exchange in and around pulsating vascular and perivascular networks. These models are widely applicable for modelling transport in vascularized tissue, brain perivascular spaces, vascular plants and similar environments. We show the existence and uniqueness of solutions to both the full- and the multi-dimensional equations under suitable assumptions on the domain velocity. Moreover, we quantify the associated modelling errors by establishing a-priori estimates in evolving Bochner spaces. In particular, we show that the modelling error decreases with the characteristic vessel diameter and thus vanishes for infinitely slender vessels. Numerical tests in idealized geometries corroborate and extend upon our theoretical findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.