Abstract
This paper presents an evolutionary radial basis function neural network with genetic algorithm and artificial immune system (GAAIS-RBFNN) for tracking control of autonomous robots. Both the GAAIS-RBFNN computational intelligence and online tracking controller are implemented in one field-programmable gate array (FPGA) chip to cope with the optimal control problem of real-world mobile robotics. The hybrid GAAIS paradigm incorporated with Taguchi quality method is employed to determine the optimal structure of RBFNN. The control parameters of tracking controller are online tuned by minimizing the performance index using the proposed GAAIS-RBFNN to achieve trajectory tracking. Experimental results and comparative works are conducted to show the effectiveness and merit of the proposed FPGA-based GAAIS-RBFNN tracking controller using system-on-a-programmable-chip technology. This FPGA-based online hybrid GAAIS-RBFNN intelligent controller outperforms the existing bio-inspired RBFNN controllers using individual GA and AIS algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.