Abstract

This paper presents an intelligent motion controller for four-wheeled holonomic mobile robots with four driving omnidirectional wheels equally spaced at 90 degrees from one another by using field-programmable gate array (FPGA)-based artificial immune system (AIS) algorithm. Both the nature-inspired AIS computational approach and motion controller are implemented in one FPGA chip to address the optimal control problem of real-world mobile robotics application. The proposed FPGA-based AIS method takes the advantages of artificial intelligence and FPGA technology by using system-on-a-programmable chip (SoPC) methodology. Experimental results are conducted to show the effectiveness and merit of the proposed FPGA-based AIS intelligent motion controller for four-wheeled omnidirectional mobile robots. This FPGA-based AIS autotuning intelligent controller outperforms the conventional nonoptimal controllers, the genetic algorithm (GA) controller, and the particle swarm optimization (PSO) controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.