Abstract

Metabolic P systems are a modeling framework for metabolic, regulatory and signaling processes. The key point of MP systems are flux regulation functions, which determine the evolution of a system from a given initial state. This paper presents important improvements to a technique, based on genetic algorithms and multiple linear regression, for inferring regulation functions that reproduce observed behaviors (time series datasets). An accurate analysis of three case studies, namely the mitotic oscillator in early amphibian embryos, the Lodka---Volterra predator-prey model and the chaotic logistic map show that this methodology can provide, from observed data, significant knowledge about the regulation mechanisms underlying biological processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.