Abstract

Social media acts as the platform for users to acquire information and spreads out breaking news. The overwhelming amount of fast-growing information makes it a challenge to track the subsequences of the breaking news or events and find the corresponding user opinions towards special aspects. Tracking the evolution of an event and predicting its subsequent trends play an important role in social media. In this paper, we propose an Evolutionary Context-aware Sequential model (ECSM) to track the evolutionary trends of the streaming text and investigate their focused context-aware topics. We integrate two novel layers into the Recurrent Chinese Restaurant Process (RCRP), respectively one context-aware topic layer and one Long Short Term Memory (LSTM) based sequential layer. The context-aware topic layer can help capture the global context-aware semantic coherences and the sequential layer is exploited to learn the local dynamics and semantic dependencies during the dynamic evolutionary process. Experimental results on real datasets show that our method significantly outperforms the state-of-the-art approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.