Abstract

A cognitive architecture is presented for modelling some properties of sensorimotor learning in infants, namely the ability to accumulate adaptations and skills over multiple tasks in a manner which allows recombination and re-use of task specific competences. The control architecture invented consists of a population of compartments (units of neuroevolution) each containing networks capable of controlling a robot with many degrees of freedom. The nodes of the network undergo internal mutations, and the networks undergo stochastic structural modifications, constrained by a mutational and recombinational grammar. The nodes used consist of dynamical systems such as dynamic movement primitives, continuous time recurrent neural networks and high-level supervised and unsupervised learning algorithms. Edges in the network represent the passing of information from a sending node to a receiving node. The networks in a compartment operate in parallel and encode a space of possible subsumption-like architectures that are used to successfully evolve a variety of behaviours for a NAO H25 humanoid robot.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call