Abstract
Evolvable hardware is reconfigurable hardware plus an evolutionary algorithm. Continuous time recurrent neural networks (CTRNNs) have already been proposed for use as the reconfigurable hardware component. Until recently, however, nearly all CTRNN based EH was simulation based. This paper provides a design for a reconfigurable analog CTRNN computer that supports both extrinsic and intrinsic CTRNN evolvable hardware. The paper will fully characterize the design and demonstrate that configurations can be moved from simulation to hardware without difficulty. It will also discuss implications for an upcoming VLSI system that will combine the CTRNN circuitry with the learning engine on a single chip.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.