Abstract

Distributed quantum computing has been well-known for many years as a system composed of a number of small-capacity quantum circuits. Limitations in the capacity of monolithic quantum computing systems can be overcome by using distributed quantum systems which communicate with each other through known communication links. In our previous study, an algorithm with an exponential complexity was proposed to optimize the number of qubit teleportations required for the communications between two partitions of a distributed quantum circuit (DQC). In this work, a genetic algorithm is used to solve the optimization problem in a more efficient way. The results are compared with the previous study and we show that our approach works almost the same with a remarkable speed-up. Moreover, the comparison of the proposed approach based on GA with a random search over the search space verifies the effectiveness of GA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.